المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : نظرية الأعداد - الدرس الاسبوعي(2)


uaemath
02-03-2007, 06:29 PM
سننتناول في هذا الدرس المواضيع التالية :


خوارزمية القسمة ( Division Algorithm )


خوارزمية إقليدس ( Euclidean Algorithm )


القاسم المشترك الأكبر ( Greatest Common Factor )


المضاعف المشترك الأصغر ( Least Common Multiple )


خوارزمية القسمة ( Division Algorithm )

نظرية 2.1 - خوارزمية القسمة (Division Algorithm)

ليكن أ و ب عددين صحيحين ( أ > صفر ) ، يمكننا أيجاد عددين صحيحين

وحيدين ( فريدين - unique ) ك و ر بحيث :

ب = أ ك + ر ، 0 ≤ ر < أ

إذا كانت ب لا تقسم على أ : 0 < ر < أ

البرهان

خذ المتتالية الحسابية(ممتدة من الجهتين) :

.....، ب - 3أ ، ب - 2أ ، ب - أ ، ب ، ب + أ ، ب + 2أ ، ب + 3أ ، .......

إثبات وجود ر

قم باختيار الحد الذي هو أقل عدد موجب في المتتالية و لنطلق عليه ر

إذن ر موجودة و هي موجبة و بالتالي تحقق الشرط الوارد في

النظرية ( 0 < ر < أ )

إثبات وجود ك

بما أن ر في المتتالية فإنها تأخذ الشكل : ب - ك أ و عليه ك موجودة و

معرّفة بالنسبة لـ ر

إثبات فرادة (uniqueness ) ك و ر

لنثبت أن ك و ر وحيدين ، نفترض وجود عددين صحيحين آخرين ك1 و ر1

يحققان نفس الشروط : 0 < ر1 < أ

نستطيع الجزم بأن ر1 = ر لأنه إذا لم يكونا متساويان ، يمكن أن نفرض

أن ر < ر1 بحيث 0 < ر1 - ر < أ

ب= أ ك + ر ، ر = ب - أ ك
ب = أ ك1 + ر 1 ، ر1 = ب - أ ك1

ر1 - ر = أ ( ك1 - ك)
و هذا يعني أن ر1 - ر تقسم على أ : ر1 - ر | أ

و لكن أ > ر1 - ر و هذا يتعارض مع النظرية 1.1 - 5

من الدرس الأول (تذكير إذا كان العددين أ و ب صحيحين موجبين و كان ب | أ ،

يكون أ ≤ ب ، بمعنى آخر ب هو الأكبر بين قواسمه )

و عليه ر1 = ر و كذلك ك1 = ك

ملحوظة

قلنا في النظرية أن أ > 0 و هذه فرضية غير ضرورية و يمكن ان تكون النظرية

كالتالي:

ليكن أ و ب عددين صحيحين ( أ ≠ صفر ) ، يمكننا أيجاد عددين صحيحين

وحيدين ( فريدين - unique ) ك و ر بحيث :

أ = ب ك + ر ، 0 ≤ ر < أ

أمثلة

أ = 5 ، ب = 17

17 = 5 × 3 + 2

أ = 428 ، ب = 963

963 = 428 × 2 + 107

كيفية الحصول على تلك النتيجة بواسطة الآلة الحاسبة

نقسم 963 على 428 فنحصل على 2.25 ، من هنا ك = 2

للحصول على ر : 428 × 0.25 = 107

ولكن ليست الحالة بسيطة دائما كذلك

أ = 428 ، ب = 964

بواسطة الآلة الحاسبة : 946 ÷ 428 = ..... 2.2523364

تظل ك = 2 ، بالنسبة لـ ر

428 × 0.2523364 = 107.99997 , أي أن ر = 108

آلة حاسبة أخرى قد تعطي عددا مختلفا من المنازل بعد الفاصلة و لكن

الطريقة واحدة.

تعريف 2.1 - القاسم المشترك الأكبر ( GCD - Greatest Common Divisor )
يكون العدد الصحيح د ≠ صفر قاسما العدد أ إذا كان أ | د

مثال : 6 قاسم من قواسم العدد 12 لأن 12 | 6

مجموعة القواسم للعدد أ هي المجموعة التي تحتوي على جميع قواسم العدد

أ ، بمعنى آخر جميع الاعداد الصحيحة د ( الغير مساوية للصفر) و التي تحقق

أ | د . نرمز لهذه المجموعة بالرمز ق <sub>أ</sub> ( D<sub>a</sub> )

مثال : ق<sub>8</sub> = { ± 1 ، ± 2 ، ± 4 ، ± 8 }

{± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 12 } = D<sub>12</sub>

يكون العدد الصحيح أ قاسما مشتركا ( Common Divisor ) لـ ب و جـ

إذا كان ب | أ و جـ | أ

مثال : 3 قاسم مشترك ( Common Divisor ) لـ 12 و 21 لأن

12 | 3 ، 21 | 3

بما أنه هناك عدد محدد من القواسم لأي عدد صحيح ≠ صفر ، هناك عدد محدد

من القواسم المشتركة لـ ب و جـ ما عدا الحالة التي يكون فيها

ب = جـ = صفر

إذا كان أحد ب أو جـ على الأقل غير مساو للصفر ، الأكبر بين قواسمهما

المشتركة نطلق عليه القاسم المشترك الأكبر ( GCD - Greatest Common Divisor ) لـ ب و جـ و نرمز له بالشكل التالي :

( ب ، جـ )

بالمثل ، القاسم المشترك الأكبر للأعداد أ ، ب ، جـ ، ......، ي

نرمز له : ( أ ، ب ، جـ ، .......، ي )

نتيجة

القاسم المشترك الأكبر ( GCD - Greatest Common Divisor ) معرّف لـ ب و جـ ما عدا الحالة ب = جـ = صفر

لاحظ أن ( ب ، جـ ) ≥ 1

خصائص

1) ب | (ب ، جـ ) و جـ | (ب ، جـ)

2) إذا كان ب | د و جـ | د فإن (ب ،جـ ) | د

3) ( ب ، جـ ) = ( جـ ، ب )

4) ( - ب ، جـ ) = ( ب ، جـ )

5) ( صفر ، ب ) = ب

6) إذا كان ب | جـ فإن ( ب ، جـ ) = جـ

مثال : 12 | 3 ، ( 12 ، 3 ) = 3

7) ( ب ، جـ ) = ( ب - جـ ، جـ )

8) (ب ، جـ) = ( ب + ك جـ ، جـ ) ، ك عدد صحيح

مثال ( 6 ، 18 ) = 6 = ( 6 + 2 × 18 ، 18 ) = ( 42 ، 18 ) = 6 ( ك = 2 )

9) إذا كانت ب = أ ك + ر فإن (ب ، أ) = (أ ، ر )

10) ( ب ، جـ ) = ( ب ، ب + جـ )

أمثلة و براهين

1) برهن الخاصية رقم 8 أعلاه : (ب ، جـ) = ( ب + ك جـ ، جـ )

إذا أثبتنا أن (ب ، جـ) |( ب + ك جـ ، جـ ) و ( ب + ك جـ ، جـ ) | (ب ، جـ)

يكونان متساويان.

باستخدام التعريف :جـ |(ب + ك جـ ، جـ ) [ منها ك جـ | (ب + ك جـ ، جـ ) ]

و ب + ك جـ |(ب + ك جـ ، جـ )

إذن ب + ك جـ - ك جـ | (ب + ك جـ ، جـ )

أي ب | (ب + ك جـ ، جـ )

و منها (ب ، جـ) |( ب + ك جـ ، جـ )

بطريقة مشابهة ( ب + ك جـ ، جـ ) | (ب ، جـ)

و عليه (ب ، جـ) = ( ب + ك جـ ، جـ )

2) أثبت أن (ن ، ن + 1 ) = 1

ليكن د = ( ن ، ن + 1 )

ن | د ، ن + 1 | د و منها ن + 1 - ن | د

أي أن 1 | د و منها د = ± 1 أي أن ( ن ، ن + 1 ) = 1

uaemath
03-03-2007, 01:19 AM
نظرية 2.2

إذا كان د = ( ب ، جـ ) فإنه يوجد أعداد صحيحة س و ص بحيث

د = ب س + جـ ص

البرهان : سيوضع عند الطلب أو بعد حل التمارين

مثال : د = ( 3 ، 7 ) = 1

1 = 3 × 19 + 7 × - 8 ( 57 - 56 = 1 )

تحذير

العكس غير صحيح : إذا كان د = ب س + جـ ص فذلك لا يعني أن د هو

القاسم المشترك الأكبر ( ب ، جـ )

مثال : 2 = 3 × - 1 + 5 × 1

و لكن ( 3 ، 5 ) = 1 و ليس 2

نتيجة

القاسم المشترك الاكبر هو أصغر قيمة موجبة لـ ب س + جـ ص ، س و ص

أعداد صحيحة

نظرية 2.3

( م ب ، م جـ ) = م ( ب ، جـ )

البرهان

باستخدام النتيجة أعلاه

( م ب ، م جـ ) = أصغر قيمة موجبة لـ م ب س + م جـ ص

= أصغر قيمة موجبة لـ م( ب س + جـ ص )

= م ( ب ، جـ )

نظرية 2.4

إذا كان ب | ك و جـ | ك ( ك > صفر ) فإن

( ب / ك ، جـ / ك ) = (1 / ك) ( ب ، جـ )

البرهان

مباشرة من النظرية 2.3 بوضع م = 1 / ك

نظرية 2.5

إذا كان ( ب ، م ) = ( جـ ، م ) = 1 فإن ( ب جـ ، م ) = 1

البرهان

باستخدام النظرية 2.2 ، يوجد أعداد صحيحة س و ص بحيث

1 = ب س + م ص و بالمثل أيضا يوجد س1 و ص1 بحيث

1 = جـ س1 + م ص1 و منهما

( ب س )(جـ س1 ) = ( 1 - م ص )(1 - م ص1 )

ب جـ س س1 = 1 - م ( ص + ص1 - م ص ص1 )

ب جـ س س1 = 1 - م ك

ب جـ س س1 + م ك = 1

من النظرية 1.1 أي قاسم مشترك بين ب جـ و م هو قاسم للـ 1

و عليه ( ب جـ ، م ) = 1

خوارزمية إقليدس ( Euclidean Algorithm )

ب و أ عددان صحيحان ( أ > صفر ) بإجراء خوارزمية القسمة بشكل متكرر ،

نحصل على سلسلة من المعادلات

ب = أ ك1 + ر 1 ، 0 < ر1 < أ ( نقسم ك1 على ر1 ) :

ك1 = ر1 ك2 + ر2 ، 0 < ر2 < ر1 و هكذا

مثال

نقسم 99 ÷ 4

99 = 24 × 4 + 3 ( الباقي = 3 ) ، الآن نقسم 4 ÷ 3

4 = 1 × 3 + 1 ( الباقي = 1 ) ، الآن نقسم 3 ÷ 1

3 = 1 × 3 + 0 ( الباقي = 0 )

القاسم المشترك الاكبر هو آخر باقي غير مساو للصفر أي الواحد في هذه

الحالة : د = 1

نتيجة

يمكننا إيجاد حل للمعادلة ( ليس كل الحلول ) 99 س + 4 ص = 1

نعبّر عن القاسم المشترك الاكبر بالنسبة للعددين ، نفعل ذلك

بالتعويض بشكل تراجعي في عمليات القسمة اعلاه :

من الثانية : 1 = 4 - 3 × 1 ------------------(*)

من الأولى : 3 = 99 - 4 × 24

نعوض قيمة الـ 3 في (*) :

1 = 4 - ( 99 - 4 × 24 )

1 = 4 - 99 + 4 × 24

1 = 4(25) + 99 (-1)

س = - 1 ، ص = 25

تعريف 2.2 - المضاعف المشترك الأصغر

يكون العدد الصحيح د ≠ صفر مضاعفا العدد أ إذا كان د | أ

مثال : 36 مضاعفا للعدد 12 لأن 36 | 12

مجموعة مضاعفات العدد أ هي المجموعة التي تحتوي على جميع مضاعفات

العدد أ ، بمعنى آخر جميع الاعداد الصحيحة د ( الغير مساوية للصفر) و التي

تحقق د | أ . نرمز لهذه المجموعة بالرمز م <sub>أ</sub> ( M<sub>a</sub> )

مثال : م<sub>8</sub> = {0 ، ± 8 ، ± 16 ، ± 32، ....... }

{ 0, ± 5 , ± 10 , ± 15 , ±20 , ± 25 , ....... } = M<sub>5</sub>

يكون العدد الصحيح أ مضاعفا مشتركا ( Common Multiple ) لـ ب و جـ

إذا كان أ | ب و أ | جـ

مثال : 15 مضاعف مشترك ( Common Multiple ) لـ 3 و 5

أقل مضاعف مشترك موجب ، نطلق عليه المضاعف المشترك الأصغر ( Least Common Multiple )

[ ب ، جـ ]

بالمثل ، المضاعف المشترك الأكبر للأعداد أ ، ب ، جـ ، ......، ي

نرمز له :[ أ ، ب ، جـ ، .......، ي]

نظرية 2.5

1) [م ب ، م جـ ] = م [ب ، جـ ] حيث م > صفر

2) [ب ، جـ ] × ( ب ، جـ ) = | ب × جـ |

البرهان : عند الطلب أو بعد حل التمارين

uaemath
03-03-2007, 02:01 AM
1 ) قرر أي من العبارات التالية صحيحة و أي منها خطأ ، في حالة الصحة اعط تبريرا مقتضبا و في حالة الخطأ اعط مثالا :

أ) إذا كان جـ = أ س + ب ص فإن جـ = ( أ ، ب )

ب) القاسم المشترك لـ أ و ب يكون قاسما لـ ( أ ، ب )

جـ) إذا كان أ ب | جـ فإن أ | جـ و ب | جـ

د) ( أ ب ، جـ ) = ( أ ، جـ ) × ( ب ، جـ ) إذا كان أ و ب أعداد أولية

2) باستخدام خوارزمية إقليدس ، أوجد القاسم المشترك الأكبر

أ) 7469 ، 2464

ب) 1109 ، 4999

3) باستخدام خوارزمية إقليدس ، أوجد القاسم المشترك الأكبر

( 42823 ، 6409 )

أوجد س و ص بحيث

6409 س + 42823 ص = 17

4) إذا كان ( أ ، 4 ) = 2 و ( ب ، 4 ) = 2 برهن أن ( أ + ب ، 4 ) = 4

5) برهن إذا كان أ ، ب > صفر بحيث ( أ ، ب ) = [ أ ، ب ] فإن أ = ب

6) أثبت أنه لا يوجد أعداد صحيحة س و ص بحيث

س + ص = 100 و ( س ، ص ) = 3

7) أثبت أنه يوجد أعداد صحيحة س و ص بحيث

س + ص = 100 و ( س ، ص ) = 5

8) ليكن م و ن أعداد صحيحة موجبة ، أثبت أنه يوجد أعداد صحيحة س و ص

بحيث س + ص = م ، ( س ، ص ) = ن إذا و فقط إذا م | ن

9) أوجد أ و ب أعداد صحيحة موجبة التي تحقق

( أ ، ب ) = 10 ، [ أ ، ب ] = 100

أوجد جميع الحلول

10) برهن أن ( أ ، أ + ب ) = ( أ ، ب )

11) إذا كان أ و ب أعداد صحيحة موجبة ، برهن أن ( أ ، ب ) = 1

إذا و فقط إذا ( أ<sup>2</sup> ، ب<sup>2</sup> ) = 1

12 ) برهن أن ( ن - 1 ، 2ن - 1 ) = 1 و كذلك ( 2ن - 1 ، 3ن - 1 ) = 1

13)* إذا كان م و ن أعداد صحيحة موجبة ، برهن أن

( 2<sup>م</sup> - 1 ، 2 <sup>ن</sup> - 1 ) = 1 إذا و فقط إذا ( م ، ن ) = 1

14) برهن أن ( 2ن<sup>2</sup> + 6ن - 4 ، 2ن<sup>2</sup> + 4ن - 3 ) = 1
( استخدم القسمة و خوارزمية إقليدس )

15)* إذا كان ( أ<sup>2</sup> ، ب جـ ) = م ، م عدد اولي أثبت أنه

إما ( أ ، ب ) = 1 أو ( أ ، جـ ) = 1

اشرف محمد
03-03-2007, 01:30 PM
الكلام ده كبير


في الواقع لم اقراه كله

لكنه يحتاج منا الى قراءة متانية

بارك الله بك اخى الكريم

عسل مصفى
03-03-2007, 10:13 PM
سلام عليكم ورحمة الله وبركاته

يعطيك العافية
1)

أ) غير صحيح

كما ذكرت في شرحك
مثال : 2 = 3 × - 1 + 5 × 1

و لكن ( 3 ، 5 ) = 1 و ليس 2
مثال اخر
5=4×3-7×1
ولكن و لكن (4 ، 7 ) = 1 و ليس 5

ب)
صح
لكن ماعرفت اثبتها


جـ)
خطأ
مثال 4×5 | 4 ولكن 4 لايقسم 5

د)
خطأ

( 3×3 ، 12) لاتساوي (3، 12) × ( 3 ، 12)


مستعجل بعدين اكمل الحلول^_^

حسام محمد
04-03-2007, 03:31 AM
1) قرر أي من العبارات التالية صحيحة و أي منها خطأ ،
في حالة الصحة اعط تبريرا مقتضبا و في حالة الخطأ اعط مثالا :


أ) إذا كان جـ = أ س + ب ص فإن جـ = ( أ ، ب )

عبارة خاطئة
مثال معاكس: لدينا: 14=8×1+6×1 لكن 14≠ (6،8)

ب) القاسم المشترك لـ أ و ب يكون قاسما لـ ( أ ، ب )

عبارة صحيحة
دوماً توجد أعداد صحيحة س,ص بحيث:( أ ، ب )=أ س+ب ص
إذا كان ء قاسم مشترك لـ أ,ب عند ئذٍ:
أ | ء ومنه: أ س | ء
ب| ء ومنه: ب ص | ء
إذاً ( أ ، ب ) =أس +ب ص | ء


جـ) إذا كان أ ب | جـ فإن أ | جـ و ب | جـ

عبارة خاطئة
مثال معاكس:3×5|3 لكن 3 لاتقسم 5


د) ( أ ب ، جـ ) = ( أ ، جـ ) × ( ب ، جـ ) إذا كان أ و ب أعداد أولية

عبارة خاطئة
مثال معاكس:(2×6,2)≠(6،2)×(6,2)


:ty:

حسام محمد
04-03-2007, 03:33 AM
2) باستخدام خوارزمية إقليدس ، أوجد القاسم المشترك الأكبر

أ) 7469 ، 2464

7469=3×2464+77
2464=32×77+0
إذاً (2464,7469)=77


ب) 1109 ، 4999

4999=4×1109+563
1109=1×563+546
563=1×546+17
546=32×17+2
17=8×2+1
2=2×1+0
إذاً (4999,1109)=1

:ty:

حسام محمد
04-03-2007, 03:34 AM
3) باستخدام خوارزمية إقليدس ، أوجد القاسم المشترك الأكبر ( 42823 ، 6409 )
42823=6×6409+4369
6409=1×4369+2040
4369=2×2040+289
2040=7×289+17.................(*)
289=17×17+0
إذاً (6409،42823)=17


أوجد س و ص بحيث 6409 س + 42823 ص = 17

من(*)
17=2040-7×289
17=2040-7×(4369-2×2040)
17=15×2040-7×4369
17=15×(6409-1×4369)-7×4369
17=15×6409-22×4369
17=15×6409-22×(42823-6×6409)
17=6409×147+42823×-22
س=147 ,ص=-22

:ty:

uaemath
04-03-2007, 02:19 PM
عسل مصفى ، حسام محمد :clap: :clap: :clap: :clap:

حسام محمد
05-03-2007, 12:07 AM
بارك الله بمجهودك الكبير أخي uaemath

مقدّرين وممنونين

:ty:

حسام محمد
06-03-2007, 04:54 AM
4) إذا كان ( أ ، 4 ) = 2 و ( ب ، 4 ) = 2 برهن أن ( أ + ب ، 4 ) = 4


ليكن ء قاسماً لـ ( أ + ب ، 4 ) فهو قاسم لـ 4 ........(*)

ليكن هـ قاسماً لـ 4 :.............(1)

لدينا ( أ ، 4 ) = 2 إذاً : أ زوجي
ولدينا ( ب ، 4 ) = 2 إذاً : ب زوجي
إذاً 4 يقسم أ+ب لكن هـ يقسم 4 ومنه:هـ يقسم أ+ب ........(2)

من (1)و(2) نجد: هـ قاسم لـ ( أ + ب ، 4 ) ............(**)

من (*)و(**) نجد أن أي قاسم لـ ( أ + ب ، 4 ) هو قاسم لـ 4
وأي قاسم لـ 4 هو قاسم لـ ( أ + ب ، 4 )

إذاً ( أ + ب ، 4 ) =4

:ty:

حسام محمد
29-06-2007, 11:07 PM
من يكمل ؟


5) برهن إذا كان أ ، ب > صفر بحيث ( أ ، ب ) = [ أ ، ب ] فإن أ = ب

6) أثبت أنه لا يوجد أعداد صحيحة س و ص بحيث

س + ص = 100 و ( س ، ص ) = 3

7) أثبت أنه يوجد أعداد صحيحة س و ص بحيث

س + ص = 100 و ( س ، ص ) = 5

8) ليكن م و ن أعداد صحيحة موجبة ، أثبت أنه يوجد أعداد صحيحة س و ص

بحيث س + ص = م ، ( س ، ص ) = ن إذا و فقط إذا م | ن

9) أوجد أ و ب أعداد صحيحة موجبة التي تحقق

( أ ، ب ) = 10 ، [ أ ، ب ] = 100

أوجد جميع الحلول

10) برهن أن ( أ ، أ + ب ) = ( أ ، ب )

11) إذا كان أ و ب أعداد صحيحة موجبة ، برهن أن ( أ ، ب ) = 1

إذا و فقط إذا ( أ<sup>2</sup> ، ب<sup>2</sup> ) = 1

12 ) برهن أن ( ن - 1 ، 2ن - 1 ) = 1 و كذلك ( 2ن - 1 ، 3ن - 1 ) = 1

13)* إذا كان م و ن أعداد صحيحة موجبة ، برهن أن

( 2<sup>م</sup> - 1 ، 2 <sup>ن</sup> - 1 ) = 1 إذا و فقط إذا ( م ، ن ) = 1

14) برهن أن ( 2ن<sup>2</sup> + 6ن - 4 ، 2ن<sup>2</sup> + 4ن - 3 ) = 1
( استخدم القسمة و خوارزمية إقليدس )

15)* إذا كان ( أ<sup>2</sup> ، ب جـ ) = م ، م عدد اولي أثبت أنه

إما ( أ ، ب ) = 1 أو ( أ ، جـ ) = 1

امل الحياة
01-11-2007, 11:22 PM
السلام عليكم ورحمة الله وبركاته

بارك الله فيك الشرح حلو كتييييييييييييييير ميرسي بجد انا استفدت منه

امل الحياة
01-11-2007, 11:29 PM
ممكن حد يساعدني في كيفية المشاركة في منتدي لسماع محاضرات من الدكتور نفسه واكون شاكرة ليه انا امل الحياة اللي بيعرف بجد يساعدني

امل الحياة
04-11-2007, 12:01 AM
ميرسي جدا علي الشرح ده والله جميييييييييل

ضحية الرياضيات
29-02-2008, 10:13 PM
)
5) برهن إذا كان أ ، ب > صفر بحيث ( أ ، ب ) = [ أ ، ب ] فإن أ = ب


السلام عليكم ورحمة الله وبركاته
محاوله بسيطه للحل
نفرض أن ( أ , ب ) = س =[ أ, ب]
وحيث أن ( أ, ب)=س
إذن أ | س و ب|س -----------------(1)
وحيث أن [ أ, ب] =س
فإن س|أ و س|ب -----------------( 2)
من (1) و (2)نجد أن
أ=س و ب=س
إذن أ=ب
وهو المطلوب

شـهد
15-03-2008, 10:38 PM
السلام عليكم ورحمة الله وبركاته
اخواني انا لا استطيع فهم الشرح بالاحرف العربية اذا ممكن بالحرف الانجايزية فقط الرموز والارقام
عندي اسئلة اتمنى اتجاوبولي عليها يمكن مش صعية عليكم بس انا والطالبات المعاي مستسعبين المادة جدا وانت شارحينوا بشكل جيد ساعدني ولكن تلخبط لان انا بستخدم الرموز بالنجليزي وياريت اتحلولي اياه باسرع وقت وياريت يكون بالكتير بكرة لان عندي اختبار ارجوكم
وهذي الاسئلة
احسبي(512,320) ثم اكتبيه كتركيب خطي
2 اثبتي ان N,N+1) =1 )لكل NتنتميZ
3) اثبتي انN!+1,(N+1)!+1}=1}
4) اثبتي ان N,N-2) =1 ) حيث N عدد صحيح موجب
5)اثبتي ان 6K+5,7K+6) = 1 ) لكلK& Zموجب
2
6) اثبتي 2lN+N لكل N تنتمي للاعداد الصحيحة الموجبة هنا N الولى مربعة
7اذا كانA,B) =1 ) فاثبت ان A+B,A-B)=1 )
بليز وساكون لكم من الشاكرين

mathson
08-04-2008, 10:10 PM
بارك الله فيك أستاذي uaemath
بالفعل استفدت كثيرا جزاك الله خيرا
وننتظر تعلم المزيد منك

رهام فوزي
09-07-2009, 04:12 AM
اللهم أغفر لها ولوالديها ماتقدم من ذنبهم وماتأخر
وقهم عذاب القبر وعذاب النار
وأدخلهم الفردوس الأعلى مع الانبياء والشهداء والصالحين
واجعل دعاءهم مستجاب في الدنيا والآخرة
اللهم أمين....

رهام فوزي
09-07-2009, 04:18 AM
رَبَّنَا لاَ تُؤَاخِذْنَا إِن نَّسِينَا أَوْ أَخْطَأْنَا رَبَّنَا وَلاَ تَحْمِلْ عَلَيْنَا إِصْرًا كَمَا حَمَلْتَهُ عَلَى الَّذِينَ مِن قَبْلِنَا رَبَّنَا وَلاَ تُحَمِّلْنَا مَا لاَ طَاقَةَ لَنَا بِهِ وَاعْفُ عَنَّا وَاغْفِرْ لَنَا وَارْحَمْنَا أَنتَ مَوْلاَنَا فَانصُرْنَا عَلَى الْقَوْمِ الْكَافِرِينَ