Parse error: syntax error, unexpected '<' in /home/uaemat5/public_html/ar/aforum/showpost.php(229) : eval()'d code on line 6
منتديات الرياضيات العربية - عرض مشاركة واحدة - المناهج في الدول العربية - نقاش
عرض مشاركة واحدة
قديم 28-03-2007, 02:39 PM   رقم المشاركة : 17
عضوفعال
 
الصورة الرمزية ihage

من مواضيعه :
0 بناء الأعداد المركبة هندسيا
0 تمارين في التفكير المنطقي
0 المناهج في الدول العربية - نقاش
0 من أين جاءت الأعداد المركبة ؟ (الحل)
0 هل تعرف من أين جاءت الأعداد المركبة ؟






ihage غير متصل
ihage is on a distinguished road

شكراً: 0
تم شكره 10 مرة في 8 مشاركة

افتراضي البرهان والتجريب في تعليم الرياضيات


يقول المثل اللبناني "ما لم تتعب به الأيادي، لن تحزن عليه القلوب". بمعنى آخر، لن يحرص الإنسان على ما حصل عليه بدون جهد بذله. ولعل الفكرة التي تكمن في هذا المثل الشعبي هي التي دفعت المختصين في التربية والتعليم، وبشكل خاص تعليم الرياضيات، إلى التوصل لمبدأ تعتمده اليوم أكثرية النظريات التربوية في تعليم الرياضيات ألا وهو دفع المتعلم إلى أن يبني بنفسه معارفه ومهاراته في الرياضيات عبر جعله محور العملية التعليمية.

ما يعنيه هذا المبدأ ؟ إنه يعني، وبكل بساطة، وضع التلميذ في موقع عالم الرياضيات الذي لا يختلف في الحقيقة عن موقع العالم الفيزيائي. فهو يُميّز مسألة يحاول حلها فيدرسها في حالات خاصة مختلفة ثم يصوغ، بالحدس، مقولات بشأنها ثم يتحقق من صحة مقولاته بالتجريب حتى إذا ما كانت نتائج التجريب مقنعة، حاول أن يبرهن صحة مقولاته باستعمال المنطق. وهكذا نرى أن مرحلة البرهان في بناء المعرفة الرياضية تأتي في المؤخرة ولا تـُشكل إلا نسبة مئوية محدودة من النشاط الذي يبني معارف الرياضيات. وهي تهدف في الحقيقة، كما قال جاك هادامارد (Jacques Hadamard) أحد أهم علماء الرياضيات في النصف الأول من القرن العشرين، إلى قوننة وشرعنة النتائج التي توصل إليها عالم الرياضيات. وقد شرح كارل فرديريك غوس
(Carl Frederich Gauss)، أهم علماء الرياضيات في القرن التاسع عشر، أنه كان يتوصل إلى الحقائق الرياضية عبر التجريب النظامي وأنه توصل بهذه الطريقة إلى اكتشاف أن عدد الأعداد الأولية التي تقل عن n يساوي تقريبا وهي نتيجة تمت البرهنة على صحتها بعد قرن من ذلك.

فإذا كان ما سبق صحيحا، فإن التجربة والاختبار يلعبان دورا مهما في بناء المعرفة الرياضية للتلميذ. وهذا يتطلب بدوره، كما طالب بذلك أميل بوريل (Emile Borel) أحد أهم علماء الرياضيات الفرنسيين سنة 1904، إنشاء مختبرات للرياضيات في المدارس تماما كما هي الحال بالنسبة لمختبرات العلوم. كما أن كورت غوديل (Kurt Gödel)، أحد أهم علماء المنطق الرياضي في القرن العشرين، كتب يقول "إذا كانت الرياضيات تصف العالم الملموس كما تفعل الفيزياء، فلا سبب يٌبرر عدم تطبيق الطرائق الاستقرائية في الرياضيات كما هو الحال في الفيزياء".

إن للتجريب وظيفة تربوية يُمكن للتلاميذ أن يستفيدوا منها. فاستعمال الكرات الزجاجية يساعد التلميذ على تكوين صورة دقيقة لعالم الأعداد الكلية. ويساعده استعمال المكعبات المترابطة على تكوين صورة بصرية للنظام العشري ولعمليات الجمع مع تجميع أو بدونه وعمليات الطرح مع تفكيك أو بدونه. كما أن استعمال الورق والكرتون والمقص يؤمن للتلميذ إدراكا عميقا لما تمثله الأشكال والأجسام الهندسية والأطوال والمساحات والحجوم.

ويلعب الحاسوب دورا مهما في مختبر الرياضيات هذا. فهو يوفر للتلميذ، عبر العمل مع برمجيات الهندسة التفاعلية، إمكانية اكتشاف العديد من حقائق الرياضيات بطريقة الحدس والتجريب. إذ أن هذه البرمجيات توفر للتلميذ إمكانية دراسة أمر ما في حالات مختلفة من دون أي عناء. لنأخذ مثالا على ذلك : تلاقي ارتفاعات المثلث في نقطة واحدة. يبدأ التلميذ برسم مثلث على الشاشة. يرسم ارتفاعين من ارتفاعات المثلث ثم يرسم نقطة تقاطعهما. يرسم بعد ذلك الارتفاع الثالث ويلاحظ أنه يمر في نقطة تقاطع الارتفاعين الأولين. لكي يدرس التلميذ هذا الأمر في حالات مختلفة، ما عليه إلا تحريك رؤوس المثلث باستعمال الفأرة (أو الماوس) فيحصل على عدد كبير من الحالات في أقل من دقيقة. لو أراد التلميذ القيام بالتجربة من دون استعمال الحاسوب، لكان عليه أن يرسم مثلثات مختلفة وأن يتحقق من أن الارتفاعات تلتقي دوما في نقطة واحدة مع احتمال أن لا تلتقي هذه الارتفاعات في إحدى الحالات نتيجة لنقص في دقة الرسم مما يضع التلميذ والمعلم في موقف حرج.

(أنظر الصورة في الملفات المرفقة)

مثال آخر : طرح المعلم المسألة التالية : "أرسم مثلثا ABC قائما عند الرأس A وارسم نقطة P على قطره BC. أرسم القطعة المستقيمة PI المتعامدة مع الضلع AB (I على الضلع AB) والقطعة المستقيمة PJ المتعامدة مع الضلع AC (J على الضلع AC). عندما تتحرك النقطة P على القطر BC يتغيّر طول القطعة المستقيمة IJ. في أي موقع يجب على النقطة P أن تكون لكي يأخذ طول القطعة المستقيمة IJ قيمته الصغرى ؟"

(أنظر الصورة في الملفات المرفقة)


يقوم التلميذ بإنشاء الرسم المـُبيّـن أعلاه وحساب طول القطعة المستقيمة IJ باستعمال برمجية الهندسة التفاعلية. للوصول إلى الحل، ما عليه إلا تحريك النقطة P إلى مواقع مختلفة ومراقبة تغيّر طول القطعة المستقيمة توصلا لتحديد الموقع المطلوب.

لو لم يوجد الحاسوب لكان على التلميذ، إذا ما أراد أن يدرس الموضوع في حالات مختلفة، أن يرسم المثلث وأن يضع النقطة P في عدة مواقع كما تبيّن الصورة أدناه ذلك. وكان عليه أن يقيس طول القطعة المستقيمة IJ في كل مرة حتى يتوصل بالحدس إلى الموقع المطلوب.


بلإضافة إلى ما سبق، يوفر الحاسوب للتلميذ إمكانية محاكاة التجارب العشوائية عشرات المرات في فترة زمنية قصيرة بما يسمح باستنتاجات يصعب الوصول إليها يدويا. مثال على ذلك، عند دراسة العلاقة بين الاحتمال النظري والاحتمال التجريبي والعلاقة بينهما وكيف أن الاحتمال التجريبي يقترب أكثر فأكثر من الاحتمال النظري كلما زاد عدد التجارب العشوائية، فإن الحاسوب يُمكن التلميذ من محاكاة التجربة العشوائية مئات المرات في فترة زمنية قصيرة. يحتوي الملف المرفق 2DicesProbability.xls (في الملفات المرفقة) على نشاط لحساب احتمال الحصول على مجموع معيّن عند رمي مكعبي أعداد وذلك بطريقة التجريب ومقارنة ذلك مع الاحتمال النظري للحصول على هذا المجموع. أهمية هذا النشاط أنه يسمح بمحاكاة رمي المكعبين 100 مرة بمجرد نقرة واحدة بالفأرة.

أعود الآن إلى السؤال الأساسي : ما موقع البرهان في تعليم الرياضيات ؟ سادت على مدى عقود مديدة نظرية في تعليم الرياضيات تقول أن تعليم الرياضيات يهدف إلى تنمية التفكير المنطقي عند التلميذ والقدرة على القيام بالاستدلال الاستنتاجي لما لذلك من أثر على نمو فكره وشخصيته. كما كانت هذه النظرية تدعي أن استيعاب حقائق الرياضيات من قبل التلميذ يقتضي قيام المعلم بالبرهنة على صحتها برهانا كاملا من دون الاكتفاء بما تبيّنه الرسوم. فأن تتلاقى ارتفاعات المثلث في نقطة واحدة لا يكفي وتجب البرهنة على ذلك باستعمال المنطق. وكم معلما سمع تلاميذه يقولون له "علام تـُتعب نفسك يا أستاذ ؟ إنها تتلاقى في نقطة واحدة. أنظر." ووصل الأمر بهذا التوجه إلى ذروته مع اندفاع مجموعة بورباكي (Boubaki) من علماء الرياضيات الفرنسيين في موجة "الرياضيات المعاصرة" في فرنسا ومن ثم في العالم، إلى حد بناء معرفة التلميذ بالهندسة الإقليدية إلى بنائها انطلاقا من مصادرات (أو أكسيومات) إقليدس واستنتاج حقائق هذه الهندسة منطقيا دون استعمال الرسومات (هناك حادثة تـُروى، في هذا المجال، عن كلود شيفاليه (Claude Chevalley)، أحد أركان مجموعة بورباكي، والذي كان يُعارض بشدة استعمال الصور في الاستدلال الهندسي. كان يُلقي محاضرة في الجبر غاية في التجريد وتوقف فجأة. بعد فترة قصيرة من التفكير، عاد إلى السبورة وحاول أن يُخفي عن الحضور ما يفعله. رسم مخططا صغيرا وتأمل فيه لحظات قبل أن يمحوه بسرعة ويعود إلى استئناف محاضرته).

كان من نتائج هذه النظرية تقسيم التلاميذ إلى قسمين : أقلية من موهوبين قادرين على تعلم الرياضيات وأكثرية من مساكين غير قادرين على ذلك. كما كان من نتائجها إهمال المهارات اليدوية التي يكتسبها التلميذ من خلال تعلم الهندسة ومهارات الحساب. ولاتعتبر هذه النظرية الرياضيات أداة توضع في يد التلميذ لفهم العالم المحيط به والتعامل معه بل ترى أنه يجب تعلم الرياضيات لذاتها. كل ذلك أدى إلى خروج أعداد هائلة من الشابات والشباب لا يملكون الحد الأدنى من ثقافة الرياضيات التي يحتاجها المواطن في هذا العصر.

أما النظريات الجديدة فهي تركز على قيام التلميذ ببناء معارفه الرياضية عبر وضعه في موقع عالم الرياضيات : يلاحظ ويدرس حالات مختلفة ثم يصوغ مقولات يتحقق من صحتها تجريبيا حتى إذا ما بدت كذلك ينتقل إلى البرهان. المهم في هذا العمل هو تعويد التلميذ على الملاحظة والحدس وعلى التجريب قبل الانطلاق إلى صياغة النتائج وهو، في كل هذه المراحل، يبرر ما يقوم به. إن الطلب دوما إلى التلميذ تبرير ما يقوم به، وخاصة كتابيا ابتداء من عمر معين، يدربه على الاستدلال استقراء واستنتاجا. على أن الأهم في الموضوع هو عدم تحويل البرهان إلى أقنوم مقدس لا يُمس.

هل يعني كل ذلك شطب البرهان من حصة الرياضيات ؟ طبعا لا. إنما ترك الأمر للمعلم وفقا لنوعية التلاميذ في الصف ومدى قدرتهم على القيام ببعض البراهين. ولا بد من تذكير المعلم أن قيامه ببرهنة حقائق رياضية على السبورة لا يؤدي إلى استيعاب التلاميذ لها وإنما وصول هؤلاء إلى هذه الحقيقة بعد البحث والتجربة هو الذي يؤدي إلى استيعابهم لها ؛ وتذكيره أيضا أن قيامه ببرهان حقائق رياضية على السبورة لا يُعلم التلاميذ البرهان.